Search results for "Vacuum Polarization"

showing 10 items of 44 documents

Rho resonance, timelike pion form factor, and implications for lattice studies of the hadronic vacuum polarization

2020

We study isospin-1 P-wave ππ scattering in lattice QCD with two flavors of O(a) improved Wilson fermions. For pion masses ranging from mπ=265 MeV to mπ=437 MeV, we determine the energy spectrum in the center-of-mass frame and in three moving frames. We obtain the scattering phase shifts using Lüscher’s finite-volume quantization condition. Fitting the dependence of the phase shifts on the scattering momentum to a Breit-Wigner form allows us to determine the corresponding ρ mass mρ and gρππ coupling. By combining the scattering phase shifts with the decay matrix element of the vector current, we calculate the timelike pion form factor, Fπ, and compare the results to the Gounaris-Sakurai repr…

1 [isospin]Particle physicsdecay constant [rho(770)]High Energy Physics::Latticeclover [fermion]energy spectrumFOS: Physical sciencesWilson [quark]01 natural sciencesphase shiftHigh Energy Physics - LatticePionvector [correlation function]Charge radius0103 physical sciencesmagnetic moment [muon]quantum chromodynamicsmass [rho(770)]hadronic [vacuum polarization]ddc:530Vacuum polarizationflavor: 2 [quark]010306 general physicsnumerical calculationscharge radius [pi]PhysicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsScatteringHigh Energy Physics - Lattice (hep-lat)scatteringlattice field theoryLattice QCDFermionBreit-Wignermass dependence [quark]form factor [pi]effect [finite size]vector [current]quantizationPhysical Review D
researchProduct

Multi-boson block factorization of fermions

2017

The numerical computations of many quantities of theoretical and phenomenological interest are plagued by statistical errors which increase exponentially with the distance of the sources in the relevant correlators. Notable examples are baryon masses and matrix elements, the hadronic vacuum polarization and the light-by-light scattering contributions to the muon g-2, and the form factors of semileptonic B decays. Reliable and precise determinations of these quantities are very difficult if not impractical with state-of-the-art standard Monte Carlo integration schemes. I will review a recent proposal for factorizing the fermion determinant in lattice QCD that leads to a local action in the g…

High Energy Physics::Latticeaction: local01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)Vacuum polarizationcorrelation functionQuantum Chromodynamics Lattice gauge theory Computational PhysicsMonte CarloBosonPhysicsform factorPhysicsHigh Energy Physics - Lattice (hep-lat)lattice field theoryPropagatorpropagator [quark]hep-phParticle Physics - Latticestatistical [error]Lattice QCDFIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIHigh Energy Physics - Phenomenologyerror: statisticalquark: factorizationquark: propagatorMonte Carlo integrationQuarkParticle physicsQC1-999fermion: determinantdeterminant [fermion]FOS: Physical scienceshep-latbaryon: massHigh Energy Physics - LatticeFactorization0103 physical sciencesmagnetic moment [muon]hadronic [vacuum polarization]010306 general physicsnumerical calculationsParticle Physics - Phenomenologymuon: magnetic moment010308 nuclear & particles physicsvacuum polarization: hadronicHigh Energy Physics::Phenomenologyphoton photon: scatteringB: decaylocal [action]Fermiondecay [B]mass [baryon]scattering [photon photon]gauge field theoryHigh Energy Physics::Experimentfactorization [quark]
researchProduct

Vacuum correlators at short distances from lattice QCD

2021

Non-perturbatively computing the hadronic vacuum polarization at large photon virtualities and making contact with perturbation theory enables a precision determination of the electromagnetic coupling at the $Z$ pole, which enters global electroweak fits. In order to achieve this goal ab initio using lattice QCD, one faces the challenge that, at the short distances which dominate the observable, discretization errors are hard to control. Here we address challenges of this type with the help of static screening correlators in the high-temperature phase of QCD, yet without incurring any bias. The idea is motivated by the observations that (a) the cost of high-temperature simulations is typica…

Nuclear and High Energy PhysicsHigh Energy Physics::Latticepolecostshep-latFOS: Physical sciencesLattice QCDQC770-798nonperturbativeoperator product expansion53001 natural sciences7. Clean energythermal [correlation function]lattice [perturbation theory]High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Nuclear and particle physics. Atomic energy. Radioactivityprecision measurement [electroweak interaction]quantum chromodynamics0103 physical sciencesPerturbative QCDhadronic [vacuum polarization]ddc:530010306 general physicsParticle Physics - Phenomenology010308 nuclear & particles physicsscreeningComputer Science::Information RetrievalphotonHigh Energy Physics - Lattice (hep-lat)lattice field theorytemperaturehep-phParticle Physics - LatticeHigh Energy Physics - Phenomenologyelectromagnetic [coupling]flavor [quark]Journal of High Energy Physics
researchProduct

Muon Anomaly from Lepton Vacuum Polarization and The Mellin--Barnes Representation

2008

We evaluate, analytically, a specific class of eighth--order and tenth--order QED contributions to the anomalous magnetic moment of the muon. They are generated by Feynman diagrams involving lowest order vacuum polarization insertions of leptons $l=e,\mu$, and $\tau$. The results are given in the form of analytic expansions in terms of the mass ratios $m_e/m_\mu$ and $m_\mu/m_\tau$. We compute as many terms as required by the error induced by the present experimental uncertainty on the lepton masses. We show how the Mellin--Barnes integral representation of Feynman parametric integrals allows for an easy analytic evaluation of as many terms as wanted in these expansions and how its underlyi…

Nuclear and High Energy PhysicsParticle physicsFOS: Physical sciences01 natural sciencesRenormalizationsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Vacuum PolarizationMuon Anomaly0103 physical sciencesFeynman diagramVacuum polarization010306 general physicsMathematical physicsPhysicsMuonMellin-Barnes RepresentationAnomalous magnetic dipole moment010308 nuclear & particles physicsConverse MappingRenormalization groupHigh Energy Physics - PhenomenologyMultidimensional Residues[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]symbolsAnomaly (physics)Lepton
researchProduct

Measurement of the quadrupole moment of Re185 and Re187 from the hyperfine structure of muonic X rays

2020

The hyperfine splitting of the 5g→4f transitions in muonic Re185,187 has been measured using high resolution high purity germanium detectors and compared to state-of-the-art atomic theoretical predictions. The spectroscopic quadrupole moment has been extracted using modern fitting procedures and compared to the values available in literature obtained from muonic x rays of natural rhenium. The extracted values of the nuclear spectroscopic quadrupole moment are 2.07(5) b and 1.94(5) b, respectively for Re185 and Re187.

Physics010308 nuclear & particles physicschemistry.chemical_elementHigh resolutionGermaniumRhenium01 natural sciences7. Clean energychemistry0103 physical sciencesQuadrupolePhysics::Atomic PhysicsVacuum polarizationAtomic physics010306 general physicsHyperfine structurePhysical Review C
researchProduct

Global fits of the SM parameters

2019

I present a global survey of weak mixing angle measurements and other precision experiments and discuss the issue of correlations of the theoretical uncertainties in precision observables. Hadronic vacuum polarization effects complicate global fits in various ways and are also covered alongside some representative fit results.

PhysicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyParticle physicsHigh Energy Physics - Phenomenology (hep-ph)HadronFOS: Physical sciencesObservableVacuum polarizationNuclear Experiment (nucl-ex)Nuclear ExperimentMixing (physics)High Energy Physics - ExperimentProceedings of 7th Annual Conference on Large Hadron Collider Physics — PoS(LHCP2019)
researchProduct

Static quantum corrections to the Schwarzschild spacetime

2005

We study static quantum corrections of the Schwarzschild metric in the Boulware vacuum state. Due to the absence of a complete analytic expression for the full semiclassical Einstein equations we approach the problem by considering the s-wave approximation and solve numerically the associated backreaction equations. The solution, including quantum effects due to pure vacuum polarization, is similar to the classical Schwarzschild solution up to the vicinity of the classical horizon. However, the radial function has a minimum at a time-like surface close to the location of the classical event horizon. There the g_{00} component of the metric reaches a very small but non-zero value. The analys…

PhysicsHigh Energy Physics - TheoryHistorySpacetimeEvent horizonVacuum stateSemiclassical physicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyComputer Science ApplicationsEducationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Horizon (general relativity)Schwarzschild metricVacuum polarizationSchwarzschild radiusMathematical physics
researchProduct

Study of the anomalous magnetic moment of the muon computed from the Adler function

2014

We compute the Adler function on the lattice from vacuum polarization data with twisted boundary conditions using numerical derivatives. The study is based on CLS ensembles with two flavours of $O(a)$ improved Wilson fermions. We extrapolate the lattice data for the Adler function to the continuum limit and to the physical pion mass and analyze its dependence on the momentum transfer. We discuss the application of this method to the extraction of the $u,d$ contribution to $a_\mu^{\mathrm{HLO}}$.

PhysicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsHigh Energy Physics::LatticeMomentum transferHigh Energy Physics - Lattice (hep-lat)FOS: Physical scienceshep-latFermion01 natural sciencesPionHigh Energy Physics - LatticeQuantum electrodynamicsLattice (order)0103 physical sciencesBoundary value problemVacuum polarization010306 general physicsPoS(LATTICE2014)162
researchProduct

A new representation of the Adler function for lattice QCD

2013

We address several aspects of lattice QCD calculations of the hadronic vacuum polarization and the associated Adler function. We implement a representation derived previously which allows one to access these phenomenologically important functions for a continuous set of virtualities, irrespective of the flavor structure of the current. Secondly we present a theoretical analysis of the finite-size effects on our particular representation of the Adler function, based on the operator product expansion at large momenta and on the spectral representation of the Euclidean correlator at small momenta. Finally, an analysis of the flavor structure of the electromagnetic current correlator is perform…

PhysicsNuclear and High Energy PhysicsCurrent (mathematics)DiagramLattice field theoryHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyRepresentation (systemics)FOS: Physical sciencesFunction (mathematics)Lattice QCDHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeVacuum polarizationOperator product expansionMathematical physics
researchProduct

Ab initio calculation of nuclear structure corrections in muonic atoms

2018

The measurement of the Lamb shift in muonic hydrogen and the subsequent emergence of the proton-radius puzzle have motivated an experimental campaign devoted to measuring the Lamb shift in other light muonic atoms, such as muonic deuterium and helium. For these systems it has been shown that two-photon exchange nuclear structure corrections are the largest source of uncertainty and consequently the bottleneck for exploiting the experimental precision to extract the nuclear charge radius. Utilizing techniques and methods developed to study electromagnetic reactions in light nuclei, recent calculations of nuclear structure corrections to the muonic Lamb shift have reached unprecedented precis…

PhysicsNuclear and High Energy PhysicsNuclear Theory010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)FOS: Physical sciences01 natural sciencesEffective nuclear charge3. Good healthLamb shiftPhysics - Atomic PhysicsNuclear physicsNuclear Theory (nucl-th)DeuteriumCharge radius0103 physical sciencesEffective field theoryPhysics::Atomic and Molecular ClustersVacuum polarizationSum rule in quantum mechanicsPhysics::Atomic Physics010306 general physicsExotic atom
researchProduct